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• Simple on purpose. Emphasis is in allowing you to 
quickly re-use material for you own science problem.

• Stop me, ask, interact. I will show no sexy scientific 
results, my aim is to solve problems you will likely 
encounter. I put myself at your place, guessing what 
you may need. For this reason, my samples are small 
(how many of you have huge sample? Furthermore, 
there is no need of huge samples to learn), but 
methods applies to large sample too.



Resist from plotting x vs y blindly

• 1) Pay attention to selection effects. It seems there is a 
correlation below, however it is a selection effect (Sandage
1972, ApJ 178, 25) fig 7



• 2) suppose you have 10 columns and you plot each one 
against each other. There are about 40 plots. If no 
correlation is put in there (e.g. I put random numbers 
there), there will be 2 plots correlated at 95 % 
confidence, because the latter means “1 out 20”. 

• Even if you have a billion rows each!



Why we regress x vs y ?
A) Prediction 
• We want to use x as proxy of y, i.e. we have x, but not y, for some items, 

and we would like to have an idea of y. e.g. Mass proxies.
• As before, swapping x and y
B) Parameter estimation
We have both x and y, we are not interested in predict y (that we have) 

from x. We are interested in the relationship between them, how one 
goes vs the other one

C)  Is there a trend?
We ask ourselves if there is a trend between x and y. Compared to case B), 

here we cannot suppose a trend is there: this is what we want to
investigate!

D) Model selection
Are data better described by a given model (e.g y=x) or another one (e.g. 

y=arctan(x)?

These four things are conceptually different: do not expect you use the 
same tool to do these four different things. E.g. in case C you cannot 
assume a trend is there!



Why the (usual) best fit is 
wrong for prediction

… when there is an error structure on x values and one adopts 
usual methods. Usual methods return answers to a different 
problem.

What many methods
attempt to return

What you should instead need, 
the shallow-to-the eye fit

Andreon & Hurn (2010, MNRAS 404, 1922)



Check it by yourself!

• Compute E(x|y) stepping y. Connect the 
resulting pairs.

• Compute E(y|x) stepping x. Connect the 
resulting pairs.

• Guess, by eye, the major axis of the 
data point cloud.

• Are the three lines equal?



A mess is there in some sub-
fields of astronomy

• 1) the previous three things are mixed up

• 2) the most used tools return either the right answer 
to a different question, or a poor estimate of the 
requested number

• 3) most astronomers miss basic concept, e.g. the 
conceptual difference between a X|Y fit and a Y|X 
fit.



Regressions
Astronomers are interested in estimating as quantities 

vary as a function of each other: e.g. Tully-Fisher, 
Faber-Jackson, Magorrian relations, Fundamental-
Plane, cluster scaling relations, GRBs (e.g. Amati) 
relations, etc.

How to determine the parameter of these 
regressions? There is no consensus in the 
astronomical literature: direct-, inverse-, 
orthogonal-, Bivariate Correlated Error and 
Intrinsic Scatter- (BCES), Measurement Error and 
Intrinsic Scatter- (MEIS), etc.    -fit?



Performances
Andreon 2010, Bayesian Methods in Cosmology



Why astronomer’ techniques do not 
work

Ordinary Last Square fit

Bivariate Correlated Error 
and Intrinsic Scatter fit

Press et al. (numerical 
recipes)

Estimated slope Estimated intrinsic dispersion

Input value Input value

Simplified bayesian
solution

Kelly et al 2007, ApJ 665, 1489



Performances
• Prediction (SA & Hurn, 2011, Statistical 

Analysis and Data Mining, invited review)

• Recovering input parameters 
(SA, 2010, Bayesian method for Cosmology)



The usual features of 
astronomical data

• Errors are heteroscedastic
• Data are not missing at random
• An intrinsic scatter is often there (non-heterogeneous 

population/systematcs)
• Relations can be non-linear
• Errors are often non-Gaussian
• Errors are sometime noisy
• (mixtures) Your sample include some unwanted object (or 

photon) but you cannot get rid of it (think to a weak signal over 
a background, a studies of quiescient early-type galaxies at z=2, 
etc.) 

• (Prior) You known something about what you are studying (you 
don’t observe it from your backyard telescope and with VLT, 
isn’t?, and you will likely not ask time at a lambda were the 
source likely does not emit, isn’t). You have priors on objects and 
parameters under study, and you may want include them in the 
analysis (say on H0)



The Bayesian way: you
need to known four
things only, that you
already known!



a) Probabilities are in the 0 to 1 
range

0 ≤p(E) ≤ 1

E.g. the probability that tomorrow is
sunny is 130 %, or -30%, make no sense
(to me). Similarly, the probability that
the Hubble constant, H0, is between 50 
and 100 is -12%, or 134 %, makes no 
sense



b) P=0 or 1

• P(Ω)=1

If I throw a die, the probability of 
observing 1, 2, 3 … 6 is one. If all
outcomes are in the considered set …

• P(Φ)=0

If I throw a die, the probability of 
observing no face is zero



c) the sum rule/axiom
p(x) = Σy p(x,y) = ∫ p(x,y)dy

Alias Margin-alisation

Color 
probability
distribution

Shape prob distrib.

die



• Marginalisation is one of the only two
things you need to remember. The other
one is stored in JAGS. Nothing else is
needed. Nothing else is allowed! Resist
from introducing estimators, talking
about optimal, best, … no freedom
(good)



d) product rule/axiom

p(x,y) = 
p(x|y)*p(y)=p(y|x)*p(x)

ex: in a bag I have 4 blue balls and 10 red balls. If I extract two of them 
without replacement, what is the probability that both are red?

The probability of getting red the first ball, p(x), is  =10/14

The probability of getting red the second ball, after having get a red ball in 
the first extraction, p(y|x), is = 9/13

The probability of getting red both, p(x,y), is the product 

10/14* 9/13= p(x) * p(y|x)

If now you change the order …



e) Bayes theorem
p(θ|data)= c * p(data|θ) * p(θ)

Posterior = c* Likelihood* prior 

Can be derived from the product rule, or, in alternative, assumed as axiom, and 
the product rule derived.

Central tool for parameter estimation

Second thing to remember (for a while only, 
later your computer remember it for you)



The posterior width quantifies the uncertainty

p(θ|data)= c * p(data|θ) * p(θ)

if p(θ|data) is a narrow (almost delta) function, θ is very well determined
if p(θ|data) is a flat function, θ is badly determined

Do you want to known the 
uncertainty? Compute the 
posterior, and its width! This is 
the mantra of most 
applications: spell a prior, 
compute the likelihood, 
multiply them, and compute the 
width of the result.



Everything comes from these 
axioms, no other ingredients 
used, no ‘in the long run’, no 
‘far from the boundaries’, 
etc. 

Everything else needed, 
everything else allowed 
(advantage!)



Is an easy formula, don’t need a computer for it, isn’t ? 

But: 

a) Don’t waste your time! writing the likelihood in closed form is often 
difficult (always impossible in research activities, unless you are 
Laplace), and always compsuming researcher precious time. This 
operation can be delegated to a software.

b) Don’t waste CPU Time! Computing the posterior in a multidimensional 
space with a stupid strategy, such as stepping (and also with a smart 
one, a Monte Carlo) is time-compsuming and will not well explore the 
parameter space, unless the problem being solved is very simple.

Several Bayesian platforms, as JAGS, are able to write the likelihood in 
your place (well, they make something different, but this is just 
numerics) and furthermore have built inside smarter than an MC 
sampler (MCMC is used, see Stoica talk). Don’t care about numerics, 
you have the posterior probability distribution in form of sampling: 
many values where the posterior is high, dew where the posterior is 
low. 

posterior = prior* likelihood



Ready to deal with regressions (and 
whatever problem!), we only need to 
indicate the *logical* link (dependency 
and math expression) between 
quantities. Full stop. 

In detail …



1) Write the mathematical model that describe how the 
data are generated: e.g.

obsntot[i]~dpois(nbkg[i]/C[i]+nclus[i]). Sketching a graph
of the logical link between quantities (bayesian graph) 
is useful.

2) Write in mathematical words what you already known
about objects/quantities of your interest (prior, e.g. 

Sigma_v ~dunif(200,2000)

3) Let the computer to compute (why otherwise it is
called computer?) and deal with the numirical-related
problems.



Non-linear regressions exist!

Energy dependency of your instrument, completeness as 
a function of flux, whatever else! 

Etheroscedastic errors, here and everything else.



The model (running code)

model {

for (i in 1:length(nrec)) {             # foreach datum

nrec[i] ~ dbin(eff[i],ninj[i])           # binomial likelihood

eff[i] <- A + (B-A)*phi((E[i]-mu)/sigma)  #math express of 
# fitted function

}

A~dunif(0,1)                             # weak priors

B~dunif(0,1)                            # taken so, not a suggestion

mu~dunif(0,100) # to always use them!

sigma~dunif(0,100)

}





• If some bins (values at some energies) 
are missing, no problem (of course, 
larger errors!). 

• True from now on, just write NA where 
you don’t have the value if missing at 
random, otherwise wait some slides...



Modeling intrinsic scatter

Sensitivity of a given line ratio on to the value of the constant of 
fine structure (TBC). Data curtesy of Wendt & Molaro (2011)

1000*(λlab /λQSO -cost)

cost is (1 + zQSO) 

If physics at z=zQSO is
the same as in our lab, the 
y axis should be just the 
QSO redshift, with no 
trend with k



Let suppose a trend is there. 
What is the slope?



The model

model {

intrscat ~ dunif(0,3)                 #weak priors

alpha ~ dnorm(0.0,1.0E-4)

beta ~ dt(0,1,1)

for (i in 1:length(x)) {             #foreach data point

# modeling ordinate

obsy[i] ~ dnorm(y[i],pow(err.y[i], -2))  #gauss errors

y[i] ~ dnorm(z[i],pow(intrscat, -2)) # gauss intrinsic scatter

# modeling ordinate vs x

z[i] <- alpha+0.1+beta*(k[i]-0.03)     # linear y vs x

}



The found slope is half a sigma 
away from zero, and the total 
variation of y over the x range 
is comparable to the y 
uncertainty of the mean model. 
Not convincing evidence for a 
trend, but a (small) one still 
possible.

What about if you miss the 
intrinsic scatter, as in old 
analysis?



P.S. in this example intrinsic scatter is a synonim of sytematics, all 
measurements pertain to a single object (it is not a population spread)



The astronomer nightmare 
starts: errors on predictor

Magorrian relation, data 
from Tremaine et al. 
(2002).

Nightmare because from 
here on a bias arizes if you 
slopply ignore what you 
should account for!



The model

model {

for (i in 1:length(obsx)) {

x[i] ~ dunif(-1.0E+4,1.0E+4)                # priors on x’s

obsx[i] ~ dnorm(x[i],pow(errx[i],-2))     # Gauss err on x

y[i] ~dnorm(b+a*(x[i]-2.3), prec.scat)  # Gauss scatter

obsy[i] ~ dnorm(y[i],pow(erry[i],-2))    # Gauss errors

}

prec.scat ~ dgamma(1.0E-2,1.0E-2)  # weak priors

intrscat <- 1/sqrt(prec.scat)

b ~ dnorm(0.0,1.0E-4)

a ~ dt(0,1,1)

}



Intrinsic scatter is probably here 
a population spread.



Getting crazy: multiple non linear, 
regression, non-gauss & mixtures

Data from Raichoor & 
Andreon (2012).

The fraction of blue 
galaxies depends on 
redshift, clustercentric
distance and galaxy mass. 

And this is not enough, a 
cross-term is needed.

Unfortunately, when we 
measure we don’t have 
individual membership of 
cluster galaxies!



+ 3 dependencies (galaxy mass,  redshift, 
clustercentric distance)



model {
for (i in 1:length(obsntot)){
obsnbkg[i]~dpois(nbkg[i])                         # Poiss bkg
obsnbluebkg[i]~dbin(fbkg[i],obsnbkg[i])  # Binom f_blue bkg
obsntot[i]~dpois(nbkg[i]/C[i]+nclus[i])     # Poiss bkg+clus
obsnbluetot[i]~dbin(f[i],obsntot[i])         # Binom f_blue tot
f[i] <- (fbkg[i]*nbkg[i]/C[i]+fclus[i]*nclus[i])/(nbkg[i]/C[i]+nclus[i]) #algebra

# 5 param fitted function (4 param insuff)
fclus[i] <- ilogit(lgfclus0+alpha*log(r200[i]/0.25)+beta*(lgM[i]-11)

+gamma*(z[i]-0.3)+zeta*(lgM[i]-11)*(z[i]-0.3))
nbkg[i] ~ dunif(1,1e+7)
fbkg[i] ~ dbeta(1,1)
nclus[i]~ dunif(1,1e+7)
}
lgfclus0 ~dnorm(0,0.01)  # priors
alpha ~ dnorm(0,0.01)   
beta ~ dnorm(0,0.01) 
gamma ~ dnorm(0,0.01) 
zeta ~ dnorm(0,0.01) 
}



mass



Sometime we deal with 
upper/lower limits, isn’t?

Optical to X-ray flux, 
fake data

Upper limits (72 % of 
the total sample!) 
authomatically dealt 
with.



The model
model {
intrscat ~ dunif(0,10)                   # weak priors
alpha ~ dnorm(0.0,1.0E-4)
beta ~ dt(0,1,1) 
zptB <-24                                    # astronomers idosincrasies
for (i in 1:length(obstotB)){        # for each datum
obstotB[i] ~ dpois(sB[i]+bkgB[i]/CB[i]) # Poiss fluct tot B band
obsbkgB[i] ~ dpois(bkgB[i])                  # Poiss fluct bkg B banc
obstotS[i] ~ dpois(sS[i]+bkgS[i]/CS[i]) # Poiss fluct tot X band
obsbkgS[i] ~ dpois(bkgS[i])                  # Poiss fluct bkg X band
magB[i] ~ dunif(18,25)                         # weak prior
sB[i] <- pow(10,(zptB-magB[i])/2.5)    # mag definition

# linear relation with intr scatt
lgfluxS[i] ~ dnorm((magB[i]-22)*beta+alpha,pow(intrscat,-2)) 
sS[i] <- pow(10,lgfluxS[i]-zptS[i])
bkgB[i] ~ dunif(0,1e+7)                    # weak prior
bkgS[i] ~ dunif(0,1e+7)                   # weak prior

}}



Input was: slope=-0.3, intecept=-11, intr scatter=0.10



With important data structure

One step back, the Eddington-Malquist-
Bayes correction …

Let consider one source, 4 (X-ray) detected photons 
(per unit time). What is its rate? 4? No, there are 
more faint stuff scattered up in flux than bright 
stuff scattered down! (usual case of Kenter et al 2005, 

ApJS 161, 9, x-ray survey with sources as faint as 2-4 

photons).  



p(θ|data)= c * p(data|θ) * p(θ)

p(µ|4) = c* p(4| µ) p(µ)

at the studied fluxes, the 
prior p(µ) (=number counts
for astronomers) is well
known, p(µ)= µ-β with beta 
approx 2.5 (euclidian slope).

4 photons are observed but
the maximum a posteriori 
(most probable) is about 1.5!

same holds true for cluster
velocity dispersions



The astronomical addressed 
problem

(Weak-lensing) mass of cluster stacks of a given observed value of richness

Fake data, based on a true case, fully described in Andreon & Hurn
(2010). 



The sheer simplicity of the 
analysis



Implementation complex because 
Schechter is not in JAGS

data {                          # JAGS idiosincrasies
zeros<-obsn-obsn
C<-10 }
model {
for (i in 1:length(obsn)) {   #foreach datum
obslgMm[i] ~ dnorm(lgM[i],pow(err[i],-2))     # mass errors
lgM[i] <- alpha*(lgn[i]-1.5)+beta # linear relation
obsn[i] ~dpois(n[i])                                      # poiss errors
n[i]  <- pow(10,lgn[i])
# implementing a math distribution missing in JAGS
lgn[i] ~ dunif(-1,3)
phi[i] <- n[i]/10^2-(-2+1-1)*lgn[i]    # Jenkins mass function
zeros[i] ~ dpois(phi[i]+C) 
}
alpha ~ dt(0,1,1)                         # prior
beta ~ dnorm(14.4,pow(3,-2))
}



Result:

Don’t confuse “fitting observed values” to “fitting true values”.



Modeling selection effects (non 
random data collection).

We started with this



Fake (but realistic) weak 
lensing masses from the 

dark mission EUCLID, about 
10000 clusters with noisy 

masses

The little we can measure. Code in Andreon & Berge 2012

What we want: use cluster richness as mass proxy 



Cyan: input

These data are not fitted, 
because they are error-less 
(and thus not available to 
astronomers). Noisy 
measurements are fitted!



Up to now focus on parameter estimation 
(finding relation parameter values)

Move to prediction: I have something 
(usually cheap to have) and a calibrating 
sample and I want something (usually 
costy to measure).



Predicted mass of a cluster.

• You can easily predict the mass of a 
cluster, knowing its n200, with zero 
character of model (or code) to type!  
In practique: add data to your file, with 
NA (not available) for mass. See 
Andreon & Hurn (2010). 

• The theory (definition!) …



How it works?
• If y is correlated to x, you can, at the first order, 

use y(xtilde) to predict y of a new xtilde value, 
reading the y|x relation at x=xtilde.

Cheap

E
x
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e

At first order, the error 
on y(tilde) should combine 
the uncertainty in y|x and 
the xtilde errors 



Posterior Predictive
Distribution

Predicted data                  Observed data

What it is: the uncertainty on the predicted value is given by 
combining the uncertainty on regression parameters, p(θ|lgM), 
and the probability of new data given the regression parameters.
It’s just the product rule of probability. It is the  error 
propagation formula, everything included.



The integral captures:

☺Many things in Nature are often non- Gaussian 
distributed. 

☺Proxy measurement errors.
☺Probably, there is no comparison sample with 

identical lgM. With some luck, we have 
clusters of similar lgM. 

☺No-one known the true M values, we only have 
noisy (ie with errors) measurements, obslgM. 

☺Even errors have an error! Could you sincerely 
measure an error with infinity precision?



How to compute posterior
predictive uncertainty in 

practice:

You (astronomers) do not need to computed it, 
neither to bother you to write what you want 
to compute (the integral), peak-up only the 
“right” output of the package. Auto-
computed in JAGS and BUGS. 



Cheap

E
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Additional complication: 
errors have errors!

Model and code in 
Andreon & Hurn (2010)



Summary:

• Efficiency: no Gauss err, no linear relation
• Varying physical constant: intrinsic scatter (systematics), 

heteroscedastic errors on target
• Magorrian relation: heteroscedastic errors on target *and* 

predictor, and intrinsic scatter
• Quenching: multiple non-linear regression with non-Gauss 

heteroscedastic errors, mixture.
• Optical-to-X ratio: dealing with upper limits (and 

heteroscedastic errors, intrinsic scatter, non-gauss errors)
• Mass-richness scaling: everything above+ x data structure 

(leading to the Eddington-Malquist bias)
• Euclid simulation: everything above + non-random data selection
• Mass-richness: prediction (posterior predictive distribution) 



Not addressed for lack of time

• Do the model fit the data? (generate 
fake data and look if they resemble to 
real data)

• Role of the prior (plot it on the top of 
the posterior and use another prior).

• Model selection: the data support this 
model or that other (use Bayes factor)

• Mixture of regressions.



Suggested lectures
• Everything  (and more) is in the >700 pages of Gelman et al. 

(2003) Bayesian Data Analysis.

Most of the material (and codes) of this lecture is taken from:
• Measurement errors and scaling relations in astrophysics: a 

review, Andreon & Hurn 2013, Statistical Analysis and Data 
Mining, 6, 15 

• Understanding better (some) astronomical data using Bayesian 
methods, Andreon 2012, Chapter 2 of "Astrostatistical
Challenges for the New Astronomy" (ed. J. Hilbe), Springer 
Series on Astrostatistics. Largely based on an invited talk at ISI 
2011 - 58th World Statistics Congress, Dublin.

• Bayesian methods for galaxy evolution studies, Andreon 2009, 
Chapter 12 of "Bayesian methods in cosmology", Cambridge 
Universtiy press

• And/or my own first-author papers (after 2009).

All on arxiv.org


